论文标题
高维归一化二进制接触过程的职业时间的中心限制定理
Central limit theorems of occupation times of high-dimensional normalized binary contact path processes
论文作者
论文摘要
Griffeath(1983)中引入的二进制接触路径过程(BCPP)描述了流行病在图上的传播,并且是改善接触过程临界值上限的研究中的辅助模型。在本文中,我们关注的是晶格上BCPP(NBCPP)归一版本的职业时间的中心限制定理。我们表明,当晶格的尺寸和模型的感染率足够大,NBCPP的初始状态与特定不变分布分布时,NBCPP的中心职业时间过程会在有限的尺寸分布中收敛到布朗运动。
The binary contact path process (BCPP) introduced in Griffeath (1983) describes the spread of an epidemic on a graph and is an auxiliary model in the study of improving upper bounds of the critical value of the contact process. In this paper, we are concerned with the central limit theorem of the occupation time of a normalized version of the BCPP (NBCPP) on a lattice. We show that the centred occupation time process of the NBCPP converges in finite dimensional distributions to a Brownian motion when the dimension of the lattice and the infection rate of the model are sufficiently large and the initial state of the NBCPP is distributed with a particular invariant distribution.