论文标题
用WAVLM预训练的特征重叠的语音和性别检测
Overlapped speech and gender detection with WavLM pre-trained features
论文作者
论文摘要
本文重点介绍了言语和性别检测的重叠,以研究法国视听媒体中男女之间的互动(性别平等监测项目)。在这种应用程序上下文中,我们需要根据说话者的性别自动分割语音信号,并确定至少两个说话者同时讲话。我们建议使用WAVLM模型,该模型具有在大量语音数据上进行预训练的优点,以构建重叠的语音检测(OSD)和性别检测(GD)系统。在这项研究中,我们使用两个不同的语料库。 Dihard III语料库非常适合OSD任务,但缺乏性别信息。盟友语料库符合项目申请上下文。我们最好的OSD系统是具有WAVLM预训练功能作为输入的时间卷积网络(TCN),该功能在Dihard上达到了新的最先进的F1得分性能。神经GD在法国广播新闻盟友数据的性别平衡子集上接受了WAVLM输入的训练,并获得了97.9%的精度。这项工作为人类科学研究人员开辟了有关法国媒体中男女表示差异的新观点。
This article focuses on overlapped speech and gender detection in order to study interactions between women and men in French audiovisual media (Gender Equality Monitoring project). In this application context, we need to automatically segment the speech signal according to speakers gender, and to identify when at least two speakers speak at the same time. We propose to use WavLM model which has the advantage of being pre-trained on a huge amount of speech data, to build an overlapped speech detection (OSD) and a gender detection (GD) systems. In this study, we use two different corpora. The DIHARD III corpus which is well adapted for the OSD task but lack gender information. The ALLIES corpus fits with the project application context. Our best OSD system is a Temporal Convolutional Network (TCN) with WavLM pre-trained features as input, which reaches a new state-of-the-art F1-score performance on DIHARD. A neural GD is trained with WavLM inputs on a gender balanced subset of the French broadcast news ALLIES data, and obtains an accuracy of 97.9%. This work opens new perspectives for human science researchers regarding the differences of representation between women and men in French media.