论文标题
MassMind:马萨诸塞州海事红外数据集
MassMIND: Massachusetts Maritime INfrared Dataset
论文作者
论文摘要
深度学习技术的最新进展引发了地面车辆自主权的根本性进步。定期用于监视,监视和其他常规任务的海洋沿海自动级别的表面车辆(ASV)可以从这种自治中受益。长期的深海运输活动是额外的机会。这两个用例的地形非常不同 - 第一个是沿海水域 - 具有许多障碍,结构和人类的存在,而后者大多没有这样的障碍。环境条件的变化都是两种地形的共同点。绘制此类地形的强大标记数据集对于提高可以推动自主权的情境意识至关重要。但是,只有此类海事数据集有限,这些数据集主要由光学图像组成。虽然,长浪红外(LWIR)是对极光线条件有助于的光谱的强烈补充,但目前尚不存在带有LWIR图像的公共数据集。在本文中,我们通过在不同条件下呈现在沿海海洋环境中捕获的2900多个LWIR分段图像的标签数据集来填补这一空白。图像使用实例分割标记,并分为七个类别 - 天空,水,障碍物,生活障碍,桥梁,自我和背景。我们还评估了三个深度学习体系结构(UNET,PSPNET,DEEPLABV3)的数据集,并对其功效提供了详细的分析。尽管数据集专注于沿海地形,但同样可以帮助深海用例。这种地形的流量将更少,在混乱环境中训练的分类器将能够有效地处理稀疏场景。我们与研究界分享此数据集,希望它刺激新的场景了解海上环境中的能力。
Recent advances in deep learning technology have triggered radical progress in the autonomy of ground vehicles. Marine coastal Autonomous Surface Vehicles (ASVs) that are regularly used for surveillance, monitoring and other routine tasks can benefit from this autonomy. Long haul deep sea transportation activities are additional opportunities. These two use cases present very different terrains -- the first being coastal waters -- with many obstacles, structures and human presence while the latter is mostly devoid of such obstacles. Variations in environmental conditions are common to both terrains. Robust labeled datasets mapping such terrains are crucial in improving the situational awareness that can drive autonomy. However, there are only limited such maritime datasets available and these primarily consist of optical images. Although, Long Wave Infrared (LWIR) is a strong complement to the optical spectrum that helps in extreme light conditions, a labeled public dataset with LWIR images does not currently exist. In this paper, we fill this gap by presenting a labeled dataset of over 2,900 LWIR segmented images captured in coastal maritime environment under diverse conditions. The images are labeled using instance segmentation and classified in seven categories -- sky, water, obstacle, living obstacle, bridge, self and background. We also evaluate this dataset across three deep learning architectures (UNet, PSPNet, DeepLabv3) and provide detailed analysis of its efficacy. While the dataset focuses on the coastal terrain it can equally help deep sea use cases. Such terrain would have less traffic, and the classifier trained on cluttered environment would be able to handle sparse scenes effectively. We share this dataset with the research community with the hope that it spurs new scene understanding capabilities in the maritime environment.