论文标题
统一的统计程序来分析不可逆的热曲线
An Unified Statistical Procedure to Analyse Irreversible Thermal Curves
论文作者
论文摘要
在许多涉及未修饰或改良的核酸的紫外线热实验中通常观察到滞后现象。在存在磁滞的情况下,热曲线是不可逆的,需要大量努力来产生反应特异性动力学和热力学参数。在本文中,我们描述了分析此类热曲线的统一统计程序。我们的方法适用于分子内和分子间反应的实验。更具体地说,所提出的方法允许人们以完全相同的方式处理热曲线,以形成双链体,三链体和各种四链体。所提出的方法使用局部多项式回归来找到平滑的热曲线并计算其斜率。该方法比最小二乘多项式平滑更灵活,易于实现,后者目前几乎被普遍用于此类目的。可以使用自由使用的统计软件对曲线进行全面分析,包括计算动力学和热力学参数。最后,我们通过分析在G Quadruplex和LNA修饰的平行双链体中遇到的不可逆曲线来说明我们的方法。
The phenomenon of hysteresis is commonly observed in many UV thermal experiments involving unmodified or modified nucleic acids. In presence of hysteresis, the thermal curves are irreversible and demand a significant effort to produce the reaction-specific kinetic and thermodynamic parameters. In this article, we describe a unified statistical procedure to analyze such thermal curves. Our method applies to experiments with intramolecular as well as intermolecular reactions. More specifically, the proposed method allows one to handle the thermal curves for the formation of duplexes, triplexes, and various quadruplexes in exactly the same way. The proposed method uses a local polynomial regression for finding the smoothed thermal curves and calculating their slopes. This method is more flexible and easy to implement than the least squares polynomial smoothing which is currently almost universally used for such purposes. Full analyses of the curves including computation of kinetic and thermodynamic parameters can be done using freely available statistical software. In the end, we illustrate our method by analyzing irreversible curves encountered in the formations of a G-quadruplex and an LNA-modified parallel duplex.