论文标题

量子古典的liouville形式主义在预先的基础上及其与相空间跳跃的联系

A Quantum-Classical Liouville Formalism in a Preconditioned Basis and Its Connection with Phase-Space Surface Hopping

论文作者

Wu, Yanze, Subotnik, Joseph

论文摘要

我们通过使用伪耐绝化基础的相位空间表面跳跃(PSSH)算法来重新审视一项最新的建议,该提案通过相位空间跳跃(PSSH)算法对非绝热问题进行建模。在这里,我们表明,这种伪造的PSSH(PD-PSSH)ANSATZ与可以在预处理过程后可以得出的量子古典liouville方程(QCLE)一致,我们证明了适当的PD-PSSH算法能够捕获某些几何磁性效果(以及标准的fssh方法)。我们还发现,在某些情况下,预处理的QCLE可以胜过标准QCL,这强调了没有唯一的QCLE的事实。最后,我们还指出,可以使用类似于PSSH所做的相位空间表示形式来构造平均田间eHrenfest算法。在理解和模拟复杂的哈密顿量和/或自旋退化的情况下,这些发现似乎非常有用。

We revisit a recent proposal to model nonadiabatic problems with a complex-valued Hamiltonian through a phase-space surface hopping (PSSH) algorithm employing a pseudo-diabatic basis. Here, we show that such a pseudo-diabatic PSSH (PD-PSSH) ansatz is consistent with a quantum-classical Liouville equation (QCLE) that can be derived following a preconditioning process, and we demonstrate that a proper PD-PSSH algorithm is able to capture some geometric magnetic effects (whereas the standard FSSH approach cannot). We also find that a preconditioned QCLE can outperform the standard QCLE in certain cases, highlighting the fact that there is no unique QCLE. Lastly, we also point out that one can construct a mean-field Ehrenfest algorithm using a phase-space representation similar to what is done for PSSH. These findings would appear extremely helpful as far understanding and simulating nonadiabatic dynamics with complex-valued Hamiltonians and/or spin degeneracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源