论文标题

通过匹配在光谱扩展器上的路由排列

Routing permutations on spectral expanders via matchings

论文作者

Nenadov, Rajko

论文摘要

我们考虑以下基于匹配的路由问题。最初,连接图$ g $的每个顶点$ v $被鹅卵石占据,该卵石具有唯一的目的地$π(v)$。在每一轮比赛中,缝制$ g $中选定的匹配边缘的鹅卵石被换成,目标是将每个卵石伸入其目标顶点,以尽可能少的回合。我们表明,如果$ g $是一个足够强的$ d $ groumbard频谱扩展器,那么在$ o(\ log n)$ rounds中可以实现任何排列$π$。这对于常数$ d $是最佳选择,并解决了Alon,Chung和Graham的问题[Siam J. Incret Math。,7(1994),第516---530页]。

We consider the following matching-based routing problem. Initially, each vertex $v$ of a connected graph $G$ is occupied by a pebble which has a unique destination $π(v)$. In each round the pebbles across the edges of a selected matching in $G$ are swapped, and the goal is to route each pebble to its destination vertex in as few rounds as possible. We show that if $G$ is a sufficiently strong $d$-regular spectral expander then any permutation $π$ can be achieved in $O(\log n)$ rounds. This is optimal for constant $d$ and resolves a problem of Alon, Chung, and Graham [SIAM J. Discrete Math., 7 (1994), pp. 516--530].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源