论文标题

相干,叠加和Löwdin对称正交化

Coherence, superposition, and Löwdin symmetric orthogonalization

论文作者

Torun, Gökhan

论文摘要

一致性和叠加的概念在概念上是相同的。但是,其资源理论配方之间存在一个重要的区别。也就是说,尽管基础状态在连贯的资源理论中是正交的,但在叠加资源理论中,它们不一定是正交的。由于非正交性,叠加状态的操纵和表征需要重大努力。在这里,我们证明Löwdin对称正交化(LSO)方法为表征纯叠加态提供了一种有用的手段。 LSO的主要特性是,原始非正交基态的结构和对称性在很大程度上被保留,这促使我们研究LSO在识别资源状态层次结构关系中的作用。值得注意的是,我们揭示了最大一致的状态在LSO的帮助下以最大的叠加转向状态:换句话说,在对称正交化的作用下它们是等效的。我们的结果促进了连贯性和叠加之间的进一步连接,其中LSO是主要工具。

The notions of coherence and superposition are conceptually the same; however, an important distinction exists between their resource-theoretic formulations. Namely, while basis states are orthogonal in the resource theory of coherence, they are not necessarily orthogonal in the resource theory of superposition. Owing to the nonorthogonality, the manipulation and characterization of superposition states require significant efforts. Here, we demonstrate that the Löwdin symmetric orthogonalization (LSO) method offers a useful means for characterizing pure superposition states. The principal property of LSO is that the structure and symmetry of the original nonorthogonal basis states are preserved to the greatest extent possible, which prompts us to study the role of LSO in identifying the hierarchical relations of resource states. Notably, we reveal that the maximally coherent states turn into the states with maximal superposition with the help of LSO: in other words, they are equivalent under the action of symmetric orthogonalization. Our results facilitate further connections between coherence and superposition, where LSO is the main tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源