论文标题
IMAP:单个人类流动性模式可视化平台
IMAP: Individual huMAn mobility Patterns visualizing platform
论文作者
论文摘要
了解人类流动性对于智慧城市和社会行为研究的发展至关重要。人类流动模型可用于许多应用,包括大流行控制,城市规划和交通管理。现有模型的预测用户移动性模式的准确性小于25%。人类运动的灵活性质可能是合理的。确实,人类的日常运动并不僵硬。此外,僵化的移动性模型可能会导致用户记录中的隐藏规律性。因此,我们提出了一种新的观点,以研究和分析人类的迁移率模式并捕获其灵活性。通常,迁移率模式由一系列位置表示。我们建议通过将这些位置抽象成一组位置来定义移动性模式。标记这些位置将使我们能够检测到接近现实的隐藏模式。我们提出IMAP,这是一种人类的单个移动模式,可视化平台。我们的平台使用户可以根据历史记录可视化他们所访问的位置的图。此外,我们的平台还显示了使用修改后的前缀方法计算出的最频繁的移动性模式。
Understanding human mobility is essential for the development of smart cities and social behavior research. Human mobility models may be used in numerous applications, including pandemic control, urban planning, and traffic management. The existing models' accuracy in predicting users' mobility patterns is less than 25%. The low accuracy may be justified by the flexible nature of the human movement. Indeed, humans are not rigid in their daily movement. In addition, the rigid mobility models may result in missing the hidden regularities in users' records. Thus, we propose a novel perspective to study and analyze human mobility patterns and capture their flexibility. Typically, the mobility patterns are represented by a sequence of locations. We propose to define the mobility patterns by abstracting these locations into a set of places. Labeling these locations will allow us to detect close-to-reality hidden patterns. We present IMAP, an Individual huMAn mobility Patterns visualizing platform. Our platform enables users to visualize a graph of the places they visited based on their history records. In addition, our platform displays the most frequent mobility patterns computed using a modified PrefixSpan approach.