论文标题
浓度拓扑下负尺寸的曲率维度条件的稳定性
Stability of curvature-dimension condition for negative dimensions under concentration topology
论文作者
论文摘要
在本文中,我们证明了度量度量空间的稳定性满足浓度拓扑结构下负尺寸的曲率维度条件的稳定性。该结果是Funano-Shioya相对于维度参数的结果的类似物。
In this paper, we prove the stability of metric measure spaces satisfying the curvature-dimension condition for negative dimensions under a concentration topology. This result is an analogue of the result by Funano-Shioya with respect to the dimension parameter.