论文标题

量化时空数据中不确定性的共形方法:调查

Conformal Methods for Quantifying Uncertainty in Spatiotemporal Data: A Survey

论文作者

Sun, Sophia

论文摘要

机器学习方法越来越广泛地用于医疗保健,运输和金融等高风险环境中。在这些环境中,重要的是,模型要产生校准的不确定性以反映其自信并避免失败。在本文中,我们调查了有关深度学习的不确定性定量(UQ)的最新著作,特别是针对其数学属性和广泛适用性的无分配保形方法。我们将涵盖共形方法的理论保证,引入在时空数据的背景下提高UQ的校准和效率的技术,并讨论UQ在安全决策中的作用。

Machine learning methods are increasingly widely used in high-risk settings such as healthcare, transportation, and finance. In these settings, it is important that a model produces calibrated uncertainty to reflect its own confidence and avoid failures. In this paper we survey recent works on uncertainty quantification (UQ) for deep learning, in particular distribution-free Conformal Prediction method for its mathematical properties and wide applicability. We will cover the theoretical guarantees of conformal methods, introduce techniques that improve calibration and efficiency for UQ in the context of spatiotemporal data, and discuss the role of UQ in the context of safe decision making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源