论文标题
无碰撞准垂直冲击时的非热电子加速度
Nonthermal Electron Acceleration at Collisionless Quasi-perpendicular Shocks
论文作者
论文摘要
在过去的几十年中,已经对无碰撞的气层和天体物理等离子体进行了冲击波进行了广泛的研究。一种主要动机是了解冲击时的非热粒子加速度。尽管长期以来,在冲击时长期以来,扩散冲击加速度(DSA)一直是宇宙射线加速的标准,但血浆对粒子加速度的物理理解仍然难以捉摸。在这篇综述中,我们讨论了准垂直冲击的非热电子加速机制,近年来已经取得了很大的进步。这篇评论中提出的讨论仅限于以下三个特定主题。第一个是随机冲击漂移加速度(SSDA),这是电子注入DSA的相对较新的机制。将讨论基本机制,相关的原位观察结果和动力学模拟以及如何与DSA连接。其次,我们讨论与年轻超新星残留物(SNR)相关的高马赫数冲击的冲击冲浪加速度(SSA)。尽管一维假设下的原始建议是不现实的,但SSA现已通过完全三维动力学模拟证明有效。最后,我们讨论了当前对磁化为基因主导的冲击的理解。电击结构内的自构电流板的自发磁重新连接是微生产生的强磁湍流的有趣结果。我们认为,Alfven和Sound Mach数字的高马赫数冲击超过20-40,可能会以微为主导的冲击行为。尽管最近有许多有趣的发现,但SSDA,SSA和磁重新连接在无碰撞冲击时的电子加速度的相对作用,以及主要的粒子加速机制如何根据冲击参数而变化。
Shock waves propagating in collisionless heliospheric and astrophysical plasmas have been studied extensively over the decades. One prime motivation is to understand the nonthermal particle acceleration at shocks. Although the theory of diffusive shock acceleration (DSA) has long been the standard for cosmic-ray acceleration at shocks, plasma physical understanding of particle acceleration remains elusive. In this review, we discuss nonthermal electron acceleration mechanisms at quasi-perpendicular shocks, for which substantial progress has been made in recent years. The discussion presented in this review is restricted to the following three specific topics. The first is stochastic shock drift acceleration (SSDA), which is a relatively new mechanism for electron injection into DSA. The basic mechanism, related in-situ observations and kinetic simulations results, and how it is connected with DSA will be discussed. Second, we discuss shock surfing acceleration (SSA) at very high Mach number shocks relevant to young supernova remnants (SNRs). While the original proposal under the one-dimensional assumption is unrealistic, SSA has now been proven efficient by a fully three-dimensional kinetic simulation. Finally, we discuss the current understanding of the magnetized Weibel-dominated shock. Spontaneous magnetic reconnection of self-generated current sheets within the shock structure is an interesting consequence of Weibel-generated strong magnetic turbulence. We argue that high Mach number shocks with both Alfven and sound Mach numbers exceeding 20-40 will likely behave as a Weibel-dominated shock. Despite a number of interesting recent findings, the relative roles of SSDA, SSA, and magnetic reconnection for electron acceleration at collisionless shocks and how the dominant particle acceleration mechanisms change depending on shock parameters remain to be answered.