论文标题
评估应用婴儿的时间模式影响识别
Evaluating Temporal Patterns in Applied Infant Affect Recognition
论文作者
论文摘要
代理商必须连续监视其伴侣的情感状态,以了解和参与社会互动。但是,评估情感识别的方法不能说明在情感状态之间的阻塞或过渡期间可能发生的分类绩效的变化。本文解决了在婴儿 - 机器人相互作用的背景下影响分类表现的时间模式,在这种情况下,婴儿的情感状态有助于他们参与治疗性腿部运动活动的能力。为了支持视频记录中面部遮挡的鲁棒性,我们训练了婴儿使用面部和身体功能的识别分类器。接下来,我们对表现最佳模型进行了深入的分析,以评估随着模型遇到丢失的数据和不断变化的婴儿影响,性能如何随着时间的变化。在高度信心提取功能的时间窗口期间,经过训练的面部功能的单峰模型与在面部和身体特征训练的多模式模型相同的最佳性能。但是,在整个数据集上评估时,多模型模型的表现优于单峰模型。此外,在预测情感状态过渡时,模型性能是最弱的,并且在对同一情感状态的多个预测后得到改善。这些发现强调了将身体特征纳入婴儿的连续影响识别的好处。我们的工作强调了随着时间的流逝和在存在丢失的数据时,在将识别识别到社交互动时评估模型性能变异性的重要性。
Agents must monitor their partners' affective states continuously in order to understand and engage in social interactions. However, methods for evaluating affect recognition do not account for changes in classification performance that may occur during occlusions or transitions between affective states. This paper addresses temporal patterns in affect classification performance in the context of an infant-robot interaction, where infants' affective states contribute to their ability to participate in a therapeutic leg movement activity. To support robustness to facial occlusions in video recordings, we trained infant affect recognition classifiers using both facial and body features. Next, we conducted an in-depth analysis of our best-performing models to evaluate how performance changed over time as the models encountered missing data and changing infant affect. During time windows when features were extracted with high confidence, a unimodal model trained on facial features achieved the same optimal performance as multimodal models trained on both facial and body features. However, multimodal models outperformed unimodal models when evaluated on the entire dataset. Additionally, model performance was weakest when predicting an affective state transition and improved after multiple predictions of the same affective state. These findings emphasize the benefits of incorporating body features in continuous affect recognition for infants. Our work highlights the importance of evaluating variability in model performance both over time and in the presence of missing data when applying affect recognition to social interactions.