论文标题

R包序列:过度分散的二项式和泊松数据的预测间隔,或基于R中的线性随机效应模型

The R package predint: Prediction intervals for overdispersed binomial and Poisson data or based on linear random effects models in R

论文作者

Menssen, Max

论文摘要

预测间隔是一个统计间隔,应包含一个(或更多)以后的观察,并具有给定的覆盖率概率,通常是根据历史控制数据计算的。在许多研究领域中讨论了预测间隔的应用,例如毒理学,临床前统计,工程,测定验证或用于复制研究的评估。无论如何,在毒理学和临床前应用中所做的先前工作中实现的预测间隔。因此,实施的方法反映了这些研究领域中常见的数据结构。在毒理学中,历史数据通常由二分或计数终点组成。因此,基于二项式或泊松分布来建模这些数据似乎很自然。无论如何,历史控制数据通常由几项研究组成。这些聚类会导致可能的过度分散,这必须反映以进行间隔计算。在临床前统计中,通常认为端点是正常的分布,但由于实验设计(交叉分类和/或分层结构),通常并非彼此独立。这些依赖性可以根据线性随机效应模型进行建模。因此,Predint提供了用于计算预测间隔和过度分散二项式数据的单侧边界的功能,用于过度分散的泊松数据以及通过线性随机效应模型建模的数据。

A prediction interval is a statistical interval that should encompass one (or more) future observation(s) with a given coverage probability and is usually computed based on historical control data. The application of prediction intervals is discussed in many fields of research, such as toxicology, pre-clinical statistics, engineering, assay validation or for the assessment of replication studies. Anyhow, the prediction intervals implemented in predint descent from previous work that was done in the context of toxicology and pre-clinical applications. Hence the implemented methodology reflects the data structures that are common in these fields of research. In toxicology the historical data is often comprised of dichotomous or counted endpoints. Hence it seems natural to model these kind of data based on the binomial or the Poisson distribution. Anyhow, the historical control data is usually comprised of several studies. These clustering gives rise to possible overdispersion which has to be reflected for interval calculation. In pre-clinical statistics, the endpoints are often assumed to be normal distributed, but usually are not independent from each other due to the experimental design (cross-classified and/or hierarchical structures). These dependencies can be modeled based on linear random effects models. Hence, predint provides functions for the calculation of prediction intervals and one-sided bounds for overdispersed binomial data, for overdispersed Poisson data and for data that is modeled by linear random effects models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源