论文标题
汉密尔顿定期两分锦标赛的分解
Hamilton decompositions of regular bipartite tournaments
论文作者
论文摘要
常规的双方锦标赛是完整平衡的两分图$ k_ {2n,2n} $的方向,其中每个顶点的内部和超级都等于$ n $。 1981年,杰克逊(Jackson)猜想,任何常规的两分赛都可以分解为汉密尔顿周期。我们证明了所有足够大的两分锦标赛的猜想。在此过程中,我们还证明了进一步的结果,包括在汉密尔顿(Hamilton)浓密的两部分挖掘的汉密尔顿(Hamilton)分解上的猜想。
A regular bipartite tournament is an orientation of a complete balanced bipartite graph $K_{2n,2n}$ where every vertex has its in- and outdegree both equal to $n$. In 1981, Jackson conjectured that any regular bipartite tournament can be decomposed into Hamilton cycles. We prove this conjecture for all sufficiently large bipartite tournaments. Along the way, we also prove several further results, including a conjecture of Liebenau and Pehova on Hamilton decompositions of dense bipartite digraphs.