论文标题
实时covid-19肺部感染分割系统的边界指导语义学习
Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection Segmentation System
论文作者
论文摘要
尽管已经开发了疫苗,并且国家疫苗接种率正在稳步提高,但2019年冠状病毒疾病(Covid-19)仍对世界各地的医疗保健系统产生负面影响。在当前阶段,从CT图像自动将肺部感染区域分割为诊断和治疗Covid-19至关重要。得益于深度学习技术的发展,已经提出了一些针对肺部感染细分的深度学习解决方案。但是,由于分布分布,复杂的背景干扰和界限模糊,现有模型的准确性和完整性仍然不令人满意。为此,我们在本文中提出了一个边界指导的语义学习网络(BSNET)。一方面,结合顶级语义保存和渐进式语义集成的双分支语义增强模块旨在模拟不同高级特征之间的互补关系,从而促进了更完整的分割结果的产生。另一方面,提出了镜像对称边界引导模块,以以镜像对称方式准确检测病变区域的边界。公开可用数据集的实验表明,我们的BSNET优于现有的最新竞争对手,并实现了44 fps的实时推理速度。
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world, though the vaccines have been developed and national vaccination coverage rate is steadily increasing. At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19. Thanks to the development of deep learning technology, some deep learning solutions for lung infection segmentation have been proposed. However, due to the scattered distribution, complex background interference and blurred boundaries, the accuracy and completeness of the existing models are still unsatisfactory. To this end, we propose a boundary guided semantic learning network (BSNet) in this paper. On the one hand, the dual-branch semantic enhancement module that combines the top-level semantic preservation and progressive semantic integration is designed to model the complementary relationship between different high-level features, thereby promoting the generation of more complete segmentation results. On the other hand, the mirror-symmetric boundary guidance module is proposed to accurately detect the boundaries of the lesion regions in a mirror-symmetric way. Experiments on the publicly available dataset demonstrate that our BSNet outperforms the existing state-of-the-art competitors and achieves a real-time inference speed of 44 FPS.