论文标题

时空心脏统计形状建模:一种数据驱动方法

Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach

论文作者

Adams, Jadie, Khan, Nawazish, Morris, Alan, Elhabian, Shireen

论文摘要

对解剖学随时间变化的结构变化的临床研究可以大大受益于人群水平的形状量化或时空统计形状建模(SSM)。这样的工具使患者器官周期或疾病进展相对于同类群体而言。构造形状模型需要建立定量形状表示(例如,相应的地标)。基于粒子的形状建模(PSM)是一种数据驱动的SSM方法,可通过优化地标放置来捕获总体级别的形状变化。但是,它假设横截面研究设计,因此在代表形状随时间变化方面的统计能力有限。现有的建模时空或纵向形状变化的方法需要预定义的形状地图集和通常在横截面上构造的预先建造的形状模型。本文提出了一种受PSM方法启发的数据驱动方法,以直接从形状数据中学习人口级时空形状。我们引入了一种新型的SSM优化方案,该方案产生了跨种群(受试者间)和跨时间序列(受试者内)的地标的地标。我们将所提出的方法应用于心房 - 纤维化患者的4D心脏数据,并证明其在表示左心房动态变化方面的功效。此外,我们表明我们的方法在生成时间序列模型(线性动力学系统(LDS))方面优于时空SSM的基于图像的方法。 LDS使用通过我们的方法优化的时空形状模型拟合,可提供更好的概括和特异性,表明它准确地捕获了基本的时间依赖性。

Clinical investigations of anatomy's structural changes over time could greatly benefit from population-level quantification of shape, or spatiotemporal statistic shape modeling (SSM). Such a tool enables characterizing patient organ cycles or disease progression in relation to a cohort of interest. Constructing shape models requires establishing a quantitative shape representation (e.g., corresponding landmarks). Particle-based shape modeling (PSM) is a data-driven SSM approach that captures population-level shape variations by optimizing landmark placement. However, it assumes cross-sectional study designs and hence has limited statistical power in representing shape changes over time. Existing methods for modeling spatiotemporal or longitudinal shape changes require predefined shape atlases and pre-built shape models that are typically constructed cross-sectionally. This paper proposes a data-driven approach inspired by the PSM method to learn population-level spatiotemporal shape changes directly from shape data. We introduce a novel SSM optimization scheme that produces landmarks that are in correspondence both across the population (inter-subject) and across time-series (intra-subject). We apply the proposed method to 4D cardiac data from atrial-fibrillation patients and demonstrate its efficacy in representing the dynamic change of the left atrium. Furthermore, we show that our method outperforms an image-based approach for spatiotemporal SSM with respect to a generative time-series model, the Linear Dynamical System (LDS). LDS fit using a spatiotemporal shape model optimized via our approach provides better generalization and specificity, indicating it accurately captures the underlying time-dependency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源