论文标题
非交换性形式主义的非交换性重力
Noncommutative hamiltonian formalism for noncommutative gravity
论文作者
论文摘要
我们提出了一种用于非交通重力的协变典型形式主义,通常是通过形式之间的扭曲的$ \ star $ wedge产品定义的非交通性几何理论。 Nueeth定理被推广到非交通设置,并且量规生成器是在扭曲的相位空间中构建的,具有$ \ star $ poisson托架。这种形式主义适用于非交换性$ d = 4 $ vierbein重力,并允许找到切线空间的规范发电机$ \ star $ - 码头组。
We present a covariant canonical formalism for noncommutative gravity, and in general for noncommutative geometric theories defined via a twisted $\star$-wedge product between forms. Noether theorems are generalized to the noncommutative setting, and gauge generators are constructed in a twisted phase space with $\star$-deformed Poisson bracket. This formalism is applied to noncommutative $d=4$ vierbein gravity, and allows to find the canonical generators of the tangent space $\star$-gauge group.