论文标题

项目建议:基于模块化的基于学习的自动化定理供体

Project proposal: A modular reinforcement learning based automated theorem prover

论文作者

Shminke, Boris

论文摘要

我们建议建立一个独立组件的强化学习谚语:演绎系统(环境),证明状态表示(代理如何看待环境)和代理培训算法。为此,我们为$ \ texttt {Gym-Saturation} $ of Openai Gym Anvironments的$ \ texttt {Gym-Saturation} $ texttt贡献了一个基于吸血鬼的环境。我们演示了使用$ \ texttt {健身房饱和} $的原型,以及流行的增强学习框架(ray $ \ texttt {rllib} $)。最后,我们讨论了完成这项工作中的计划,以进行具有竞争性自动定理供体。

We propose to build a reinforcement learning prover of independent components: a deductive system (an environment), the proof state representation (how an agent sees the environment), and an agent training algorithm. To that purpose, we contribute an additional Vampire-based environment to $\texttt{gym-saturation}$ package of OpenAI Gym environments for saturation provers. We demonstrate a prototype of using $\texttt{gym-saturation}$ together with a popular reinforcement learning framework (Ray $\texttt{RLlib}$). Finally, we discuss our plans for completing this work in progress to a competitive automated theorem prover.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源