论文标题

量子猎物示威者动力学:高斯集合分析

Quantum prey-predator dynamics: a gaussian ensemble analysis

论文作者

Bernardini, Alex E., Bertolami, Orfeu

论文摘要

用于建模竞争性生态系统和自组织结构的量子框架已在量子力学产生的多种观点下进行了研究。这些包括对Weyl-Wigner量子力学框架中相位空间猎物竞争动态的描述。在这种情况下,可以通过分析评估由Lotka-Volterra(LV)Hamiltonian所描述的经典动力学,量子状态通过统计高斯集合卷曲的量子状态可以进行分析评估。然后可以鉴定出对猎物前进动力学平衡和稳定性模式的量子修改。这些包括通过从汉密尔顿爆发背景获得的Wigner电流通量来量化LV动力学的平衡点驱动器上的量子失真。此外,对于高斯合奏在平衡点周围高度局部,稳定性的特性受到了新兴拓扑量子域的影响,在某些情况下,这些量子域可能导致灭绝和复兴情景或复兴的场景或捕食者和捕食者的永久性和捕食者在显微镜系统中被识别为量子量的量子。结论性地,量子和高斯统计驱动参数被证明会影响此类微生物样群落的稳定性标准和时间演化模式。

Quantum frameworks for modeling competitive ecological systems and self-organizing structures have been investigated under multiple perspectives yielded by quantum mechanics. These comprise the description of the phase-space prey-predator competition dynamics in the framework of the Weyl-Wigner quantum mechanics. In this case, from the classical dynamics described by the Lotka-Volterra (LV) Hamiltonian, quantum states convoluted by statistical gaussian ensembles can be analytically evaluated. Quantum modifications on the patterns of equilibrium and stability of the prey-predator dynamics can then be identified. These include quantum distortions over the equilibrium point drivers of the LV dynamics which are quantified through the Wigner current fluxes obtained from an onset Hamiltonian background. In addition, for gaussian ensembles highly localized around the equilibrium point, stability properties are shown to be affected by emergent topological quantum domains which, in some cases, could lead either to extinction and revival scenarios or to the perpetual coexistence of both prey and predator agents identified as quantum observables in microscopic systems. Conclusively, quantum and gaussian statistical driving parameters are shown to affect the stability criteria and the time evolution pattern for such microbiological-like communities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源