论文标题

学习深层指纹表示的合奏

Learning an Ensemble of Deep Fingerprint Representations

论文作者

Godbole, Akash, Nandakumar, Karthik, Jain, Anil K.

论文摘要

深度神经网络(DNN)在学习指纹的固定长度表示方面表现出了不可思议的希望。由于表示学习通常专注于捕获特定的先验知识(例如细节),因此没有通用表示形式可以全面地封装指纹中所有可用的歧视性信息。在学习一系列表示形式可以缓解此问题的同时,需要解决两个关键的挑战:(i)如何从相同的指纹图像中提取多种不同的表示? (ii)如何在匹配过程中最佳利用这些表示形式?在这项工作中,我们在输入图像的不同变换上训练多个Deepprint(一种基于DNN的指纹编码器)的多个实例,以生成指纹嵌入的集合。我们还提出了一种特征融合技术,该技术将这些多个表示形式提炼成单个嵌入,该技术忠实地捕获了整体中存在的多样性而不会增加计算复杂性。已在五个数据库中对所提出的方法进行了全面评估,其中包含滚动,平原和潜在的指纹(NIST SD4,NIST SD14,NIST SD27,NIST SD302和FVC2004 DB2A),并且在准确性上均一识别范围均一度均一致地证明了准确的准确性改进,并在准确性方面均保持了识别范围。提出的方法是能够提高任何基于DNN的识别系统的准确性的包装纸。

Deep neural networks (DNNs) have shown incredible promise in learning fixed-length representations from fingerprints. Since the representation learning is often focused on capturing specific prior knowledge (e.g., minutiae), there is no universal representation that comprehensively encapsulates all the discriminatory information available in a fingerprint. While learning an ensemble of representations can mitigate this problem, two critical challenges need to be addressed: (i) How to extract multiple diverse representations from the same fingerprint image? and (ii) How to optimally exploit these representations during the matching process? In this work, we train multiple instances of DeepPrint (a state-of-the-art DNN-based fingerprint encoder) on different transformations of the input image to generate an ensemble of fingerprint embeddings. We also propose a feature fusion technique that distills these multiple representations into a single embedding, which faithfully captures the diversity present in the ensemble without increasing the computational complexity. The proposed approach has been comprehensively evaluated on five databases containing rolled, plain, and latent fingerprints (NIST SD4, NIST SD14, NIST SD27, NIST SD302, and FVC2004 DB2A) and statistically significant improvements in accuracy have been consistently demonstrated across a range of verification as well as closed- and open-set identification settings. The proposed approach serves as a wrapper capable of improving the accuracy of any DNN-based recognition system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源