论文标题
非晶状体材料中的对称性的平面节点链声子
Symmetry-enforced planar nodal chain phonons in non-symmorphic materials
论文作者
论文摘要
拓扑量量子问题的前沿,受对称并产生创新激发的拓扑半学状态。在非晶状体电子系统中首先发现了两个节点环在一个点连接的节点链,然后将其推广到符号语音系统。在这项工作中,我们在非晶状体语音系统中确定了一类新的平面节点链,其中连接环位于同一平面。组成的节点环受到镜子对称性的保护,它们的相交是通过时间反转和非肌形螺钉对称性的结合来保证的。此外,连接点是四倍的堕落,而以前的作品中的连接点是两个折叠的。我们搜索了所有230个空间组,并找到了8个可以托管建议的平面节点链声子的空间组。以Wurtzite gan(空间群为186)为例,平面淋巴结链被第一原理计算确认。平面淋巴结链会导致两种不同的鼓头表面。第一类位于[10(-1)0]表面布里群区域,第二类位于[0001]表面布里渊区。我们的发现揭示了在非符号语音系统中的一类平面淋巴结链,扩大了拓扑结节链的目录,并丰富了拓扑表面状态的家族。
Topological semimetal states which are constrained by symmetries and give birth to innovative excitations are the frontiers of topological quantum matter. Nodal chains in which two nodal rings connect at one point were first discovered in non-symmorphic electronic systems and then generalized to symmorphic phononic systems. In this work, we identify a new class of planar nodal chains in non-symmorphic phononic systems, where the connecting rings lie in the same plane. The constituting nodal rings are protected by mirror symmetry, their intersection is guaranteed by the combination of time-reversal and non-symmorphic two-fold screw symmetry. In addition, the connecting points are four-fold degenerate while those in previous works are two-fold degenerate. We searched all 230 space groups and found 8 space groups that can host the proposed planar nodal chain phonons. Taking wurtzite GaN (space group No.186) as an example, the planar nodal chain is confirmed by first-principles calculations. The planar nodal chains result in two distinct classes of drumhead surface. The first category lies on the [10(-1)0] surface Brillouin zone and the second lies on the [0001] surface Brillouin zone. Our finding reveals a class of planar nodal chains in non-symmorphic phononic systems, expands the catalog of topological nodal chains, and enriches the family of topological surface states.