论文标题
使用节点局部差异隐私发布图形统计的加密协助方法
A Crypto-Assisted Approach for Publishing Graph Statistics with Node Local Differential Privacy
论文作者
论文摘要
在节点差异隐私下发布图形统计信息引起了很多关注,因为它提供了比边缘差异隐私更强的隐私保证。与节点差异隐私相关的现有作品假设持有整个图的受信任的数据策展人。但是,在许多应用程序中,由于隐私和安全问题,通常无法获得受信任的策展人。在本文中,我们首次研究了不依赖于受信任的服务器的节点局部微分隐私(node-dldp)下发布图形分布的问题。我们提出了一种算法,通过探索如何选择最佳图投影参数以及如何执行本地图投影,以使用node-dldp发布学位分布。具体而言,我们提出了一种结合了印度卢比和加密原始图的加密辅助局部投影方法,比我们的基线PURELDP局部投影方法获得了更高的精度。另一方面,我们通过提出一个边缘级参数选择来改善基线节点级参数选择,该参数选择可保留更多相邻信息并提供更好的效用。最后,在现实世界图上进行的广泛实验表明,与节点级局部投影相比,边缘级局部投影提供的精度更高,而加密辅助参数选择比PURELDP参数选择更好,分别提高了79.8%和57.2%。
Publishing graph statistics under node differential privacy has attracted much attention since it provides a stronger privacy guarantee than edge differential privacy. Existing works related to node differential privacy assume a trusted data curator who holds the whole graph. However, in many applications, a trusted curator is usually not available due to privacy and security issues. In this paper, for the first time, we investigate the problem of publishing the graph degree distribution under Node Local Differential privacy (Node-LDP), which does not rely on a trusted server. We propose an algorithm to publish the degree distribution with Node-LDP by exploring how to select the optimal graph projection parameter and how to execute the local graph projection. Specifically, we propose a Crypto-assisted local projection method that combines LDP and cryptographic primitives, achieving higher accuracy than our baseline PureLDP local projection method. On the other hand, we improve our baseline Node-level parameter selection by proposing an Edge-level parameter selection that preserves more neighboring information and provides better utility. Finally, extensive experiments on real-world graphs show that Edge-level local projection provides higher accuracy than Node-level local projection, and Crypto-assisted parameter selection owns the better utility than PureLDP parameter selection, improving by up to 79.8% and 57.2% respectively.