论文标题

通过电子准晶阶成像Wigner晶体的量子熔化

Imaging the quantum melting of Wigner crystal with electronic quasicrystal order

论文作者

Wang, Zhongjie, Zhao, Meng, Liu, Lu, Wang, Chunzheng, Yang, Fang, Wu, Hua, Gao, Chunlei

论文摘要

Wigner Crystal是最基本的典范,其中多体相互作用将电子锻造成固体,经历了有趣的量子熔化,其中预计将在量子临界点附近出现不同的中间阶段。通过光学或运输测量结果,已经建立了外来的Wigner顺序,例如气泡相,液体固相和各向异性的Wigner相。但是,晶格规模熔点的直接可视化对明确揭示熔化性质至关重要,这仍然是充满挑战和缺乏的。注意到最近通过扫描隧道显微镜在这里填充的Moire超级晶体中实现了Wigner晶体,我们通过进一步改变单层YBCL3/Graphene Ortrounture的Moire Usstructure实现的Wigner Solid的量子熔化。 Wigner固体是在界面电子孔对的二维集合上构建的,该集合来自电荷转移。某些摩尔电势和离子电位之间的相互作用导致Wigner固体的量子熔化,这是由电子液体特征的出现所证明的,从而验证了理论预测。特别是,类似于由原子制成的经典准晶体,在量子熔点上可视化了由电子制成的十二烷基晶体,即Wigner Quasicrytal。与不可压缩的Wigner固体形成鲜明对比的是,Wigner Quasicrytal宿主的液化性相当大,这是由于散射引起的干扰波纹所揭示的。借助由单层重型电子材料和石墨烯组成的二维电荷传递界面,我们的发现不仅丰富了对量子固体熔融熔化的探索和理解,而且还为直接探测相关的多体系统的量子关键顺序铺平了道路。

Wigner crystal, as the most fundamental exemplification where the many-body interaction forges the electrons into a solid, experiences an intriguing quantum melting where diverse intermediate phases are predicted to emerge near the quantum critical point. Indications of exotic Wigner orders like bubble phase, liquid-solid phase, and anisotropic Wigner phase have been established by optical or transport measurements. However, the direct visualization of lattice-scale melting order, which is of paramount importance to unequivocally uncover the melting nature, remains challenging and lacking. Noting that Wigner crystals have been achieved in the fractionally filled moire superlattice recently, here, via scanning tunneling microscope, we image the quantum melting of Wigner solid realized by further varying the moire superstructure in monolayer YbCl3/graphene heterostructure. The Wigner solid is constructed on the two-dimensional ensemble of interfacial electron-hole pairs derived from charge transfer. The interplay between certain moire potential and ionic potential leads to the quantum melting of Wigner solid evidenced by the emergence of electron-liquid characteristic, verifying the theoretical predictions. Particularly, akin to the classical quasicrystal made of atoms, a dodecagonal quasicrystal made of electrons, i.e., the Wigner quasicrytal, is visualized at the quantum melting point. In stark contrast to the incompressible Wigner solid, the Wigner quasicrytal hosts considerable liquefied nature unraveled by the interference ripples caused by scattering. By virtue of the two-dimensional charge transfer interface composed of monolayer heavy electron material and graphene, our discovery not only enriches the exploration and understanding of quantum solid-liquid melting, but also paves the way to directly probe the quantum critical order of correlated many-body system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源