论文标题

关于代表转移的研究,用于几次学习

A Study on Representation Transfer for Few-Shot Learning

论文作者

Yu, Chun-Nam, Xie, Yi

论文摘要

很少有射击分类旨在仅使用几个标签示例就可以很好地学习新对象类别。从其他模型转移功能表示是一种流行的方法,用于解决几个射击分类问题。在这项工作中,我们对各种功能表示形式进行了系统的研究,以进行几次射击分类,包括从MAML中学到的表示形式,监督分类以及几个常见的自我监督任务。我们发现,从更复杂的任务中学习倾向于为几个射击分类提供更好的表示,因此我们建议使用从多个任务中学到的表示形式进行几次分类。加上有关功能选择和投票以处理小型样本量的新技巧,我们的直接转移学习方法提供的性能可与几个基准数据集上的最先进相提并论。

Few-shot classification aims to learn to classify new object categories well using only a few labeled examples. Transferring feature representations from other models is a popular approach for solving few-shot classification problems. In this work we perform a systematic study of various feature representations for few-shot classification, including representations learned from MAML, supervised classification, and several common self-supervised tasks. We find that learning from more complex tasks tend to give better representations for few-shot classification, and thus we propose the use of representations learned from multiple tasks for few-shot classification. Coupled with new tricks on feature selection and voting to handle the issue of small sample size, our direct transfer learning method offers performance comparable to state-of-art on several benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源