论文标题

RX-ADS:使用对抗ML进行电动汽车可解释的异常检测

RX-ADS: Interpretable Anomaly Detection using Adversarial ML for Electric Vehicle CAN data

论文作者

Wickramasinghe, Chathurika S., Marino, Daniel L., Mavikumbure, Harindra S., Cobilean, Victor, Pennington, Timothy D., Varghese, Benny J., Rieger, Craig, Manic, Milos

论文摘要

近年来,电动汽车(EV)和相关基础设施/通信带来了很大的进步。入侵检测系统(IDS)被广泛部署在此类关键基础架构中的异常检测。本文提出了一个可解释的异常检测系统(RX-ADS),用于在电动汽车中的CAN协议中进行入侵检测。贡献包括:1)基于窗口的特征提取方法; 2)基于深度自动编码器的异常检测方法; 3)基于对抗机器学习的解释生成方法。在两个基准CAN数据集上测试了提出的方法:OTID和汽车黑客。将RX-ADS的异常检测性能与这些数据集的最新方法进行了比较:HID和GID。 RX-ADS方法提出的性能可与HIDS方法(OTIDS数据集)相当,并且表现优于HID和GID方法(CAR HACKING DATASET)。此外,所提出的方法能够为因各种侵入而引起的异常行为产生解释。这些解释后来通过域专家使用的信息来检测异常来验证。 RX-ADS的其他优点包括:1)该方法可以在未标记的数据上进行培训; 2)解释有助于专家了解异常和根课程分析,并有助于进行AI模型调试和诊断,最终改善了对AI系统的用户信任。

Recent year has brought considerable advancements in Electric Vehicles (EVs) and associated infrastructures/communications. Intrusion Detection Systems (IDS) are widely deployed for anomaly detection in such critical infrastructures. This paper presents an Interpretable Anomaly Detection System (RX-ADS) for intrusion detection in CAN protocol communication in EVs. Contributions include: 1) window based feature extraction method; 2) deep Autoencoder based anomaly detection method; and 3) adversarial machine learning based explanation generation methodology. The presented approach was tested on two benchmark CAN datasets: OTIDS and Car Hacking. The anomaly detection performance of RX-ADS was compared against the state-of-the-art approaches on these datasets: HIDS and GIDS. The RX-ADS approach presented performance comparable to the HIDS approach (OTIDS dataset) and has outperformed HIDS and GIDS approaches (Car Hacking dataset). Further, the proposed approach was able to generate explanations for detected abnormal behaviors arising from various intrusions. These explanations were later validated by information used by domain experts to detect anomalies. Other advantages of RX-ADS include: 1) the method can be trained on unlabeled data; 2) explanations help experts in understanding anomalies and root course analysis, and also help with AI model debugging and diagnostics, ultimately improving user trust in AI systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源