论文标题

通过数据驱动模型推进反应流量模拟

Advancing Reacting Flow Simulations with Data-Driven Models

论文作者

Zdybał, Kamila, D'Alessio, Giuseppe, Aversano, Gianmarco, Malik, Mohammad Rafi, Coussement, Axel, Sutherland, James C., Parente, Alessandro

论文摘要

使用机器学习算法来预测复杂系统的行为正在蓬勃发展。但是,在包括燃烧在内的多物理问题中有效利用机器学习工具的关键是将它们与物理和计算机模型搭配在一起。如果所有先验知识和物理约束都体现了这些工具的性能。换句话说,由于数值计算的进步,必须对科学方法进行调整以将机器学习带入图片,并充分利用我们生成的大量数据。本章回顾了一些开放的机会,用于应用燃烧系统的数据驱动的减少订单建模。提供了湍流燃烧数据中的特征提取的示例,提供了经验低维歧管(ELDM)识别,分类,回归和减少阶段的示例。

The use of machine learning algorithms to predict behaviors of complex systems is booming. However, the key to an effective use of machine learning tools in multi-physics problems, including combustion, is to couple them to physical and computer models. The performance of these tools is enhanced if all the prior knowledge and the physical constraints are embodied. In other words, the scientific method must be adapted to bring machine learning into the picture, and make the best use of the massive amount of data we have produced, thanks to the advances in numerical computing. The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems. Examples of feature extraction in turbulent combustion data, empirical low-dimensional manifold (ELDM) identification, classification, regression, and reduced-order modeling are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源