论文标题
关于自模型的起源
On the Origins of Self-Modeling
论文作者
论文摘要
自我模型是一种过程,例如动物或机器等代理商学会创建自己动态的预测模型。一旦被捕获,这种自模型就可以允许代理使用自模型在内部计划和评估各种潜在行为,而不是使用昂贵的物理实验。在这里,我们量化了这种自模型对机器人的复杂性的好处。我们发现与直接学习基线相比,机器人拥有的自由度数量与自模型的附加值之间的R2 = 0.90相关性。这一结果可能有助于激励日益复杂的机器人系统中的自我建模,并阐明动物和人类自我建模的起源,并最终自我意识。
Self-Modeling is the process by which an agent, such as an animal or machine, learns to create a predictive model of its own dynamics. Once captured, this self-model can then allow the agent to plan and evaluate various potential behaviors internally using the self-model, rather than using costly physical experimentation. Here, we quantify the benefits of such self-modeling against the complexity of the robot. We find a R2 =0.90 correlation between the number of degrees of freedom a robot has, and the added value of self-modeling as compared to a direct learning baseline. This result may help motivate self modeling in increasingly complex robotic systems, as well as shed light on the origins of self-modeling, and ultimately self-awareness, in animals and humans.