论文标题

相稳定的紫外线在267 nm到双重谐波生成

Phase-stabilized UV light at 267 nm through twofold second harmonic generation

论文作者

Kraus, Benjamin, Dawel, Fabian, Hannig, Stephan, Kramer, Johannes, Nauk, Constantin, Schmidt, Piet O.

论文摘要

提供相位稳定的激光光对于将光学时钟的询问时间扩展到许多秒,从而实现小统计不确定性很重要。我们报告了一个激光系统,可为铝离子光学时钟提供超过50个UW相稳定的紫外线。光是通过在两个级联的非线性晶体中以1069.6 nm处于1069.6 nm处的纤维激光器的频率来生成的,均以单次通构为单一的配置。在第一阶段,一个10 mm长的PPLN波导晶体将1 W的基本光转换为534.8 nm的0.2 W以上。在以下50 mm长的DKDP晶体中,生成了267.4 nm处的50 UW。通过使用相同源激光器的现有相稳定的四倍体系统,通过Beat-node测量系统测量了被动短期稳定性的上限。给定足够稳定的激光源,1 s后所得的分数频率不稳定小于5 x 10^-17,这支持了27Al^+时钟过渡的生命周期限制探测。通过将泵光的干涉路径长度稳定在整个设置中反射并纠正频率偏差,可以进一步提高第四次谐波光的稳定性。环内误差信号表示在1 s时电子有限的不稳定性为1 x 10^-18。

Providing phase stable laser light is important to extend the interrogation time of optical clocks towards many seconds and thus achieve small statistical uncertainties. We report a laser system providing more than 50 uW phase-stabilized UV light at 267.4 nm for an aluminium ion optical clock. The light is generated by frequency-quadrupling a fibre laser at 1069.6 nm in two cascaded non-linear crystals, both in single-pass configuration. In the first stage, a 10 mm long PPLN waveguide crystal converts 1 W fundamental light to more than 0.2 W at 534.8 nm. In the following 50 mm long DKDP crystal, more than 50 uW of light at 267.4 nm are generated. An upper limit for the passive short-term phase stability has been measured by a beat-node measurement with an existing phase-stabilized quadrupling system employing the same source laser. The resulting fractional frequency instability of less than 5 x 10^-17 after 1 s supports lifetime-limited probing of the 27Al^+ clock transition, given a sufficiently stable laser source. A further improved stability of the fourth harmonic light is expected through interferometric path length stabilisation of the pump light by back-reflecting it through the entire setup and correcting for frequency deviations. The in-loop error signal indicates an electronically limited instability of 1 x 10^-18 at 1 s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源