论文标题
二元星形成通过核心碎片的贡献对原始多重性
The contribution of binary star formation via core-fragmentation on protostellar multiplicity
论文作者
论文摘要
对年轻多星系的观察发现,在伴侣频率和分离中发现了双峰分布。这些峰的起源通常归因于通过核心和圆盘碎片化的二元形成。然而,理论和模拟表明,通过核心碎片形成形成的年轻恒星系统会经历明显的轨道进化。我们研究了环境对多个恒星系统的形成和轨道演变的影响,以及核心碎片如何促进近距离(20-100AU)二进制的形成。我们在巨型分子云中使用多个恒星形成的模拟,并将它们与珀尔修斯星形成区域的多重性统计量进行比较。模拟使用具有足够分辨率的自适应网格改进代码公羊进行,以解决400AU以上的核心碎片和动力学演变至16.6au,但没有解决盘片段化的可能性。在数百万年内,随之而来的恒星系统的演变得到了遵循。我们发现,在较低气体密度环境中的恒星形成更加聚集。然而,尽管如此,通过动态捕获和核心碎片形成的系统的分数分别在〜40 \%和〜60 \%的情况下是广泛一致的。然后,我们将模拟与与珀尔修斯星形成区域最相似的条件进行了比较,以确定是否可以复制观察到的双峰分布。我们发现它可以复制,但对模拟的进化状态很敏感。我们的结果表明,与20-100AU分离的大量低质量关闭二进制文件可以通过核心碎片或由于有效的灵感而产生的动态捕获,而无需从光盘碎片碎片中产生进一步的贡献。
Observations of young multiple star systems find a bimodal distribution in companion frequency and separation. The origin of these peaks has often been attributed to binary formation via core and disc fragmentation. However, theory and simulations suggest that young stellar systems that form via core fragmentation undergo significant orbital evolution. We investigate the influence of the environment on the formation and orbital evolution of multiple star systems, and how core fragmentation contributes to the formation of close (20-100AU) binaries. We use multiple simulations of star formation in giant molecular clouds and compare them to the multiplicity statistics of the Perseus star-forming region. Simulations were run with the adaptive mesh refinement code RAMSES with sufficient resolution to resolve core fragmentation beyond 400AU and dynamical evolution down to 16.6AU, but without the possibility of resolving disc fragmentation. The evolution of the resulting stellar systems was followed over millions of years. We find that star formation in lower gas density environments is more clustered; however, despite this, the fractions of systems that form via dynamical capture and core fragmentation are broadly consistent at ~40\% and ~60\%, respectively. We then compared the simulation with the conditions most similar to the Perseus star-forming region to determine whether the observed bimodal distribution can be replicated. We find that it can be replicated, but it is sensitive to the evolutionary state of the simulation. Our results indicate that a significant number of low-mass close binaries with separations from 20-100AU can be produced via core fragmentation or dynamical capture due to efficient inspiral, without the need for a further contribution from disc fragmentation.