论文标题

利用基于布局的效果锁定模拟IC

Leveraging Layout-based Effects for Locking Analog ICs

论文作者

Aljafar, Muayad J., Azais, Florence, Flottes, Marie-Lise, Pagliarini, Samuel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While various obfuscation methods exist in the digital domain, techniques for protecting Intellectual Property (IP) in the analog domain are mostly overlooked. Understandably, analog components have a small footprint as most of the surface of an Integrated Circuit (IC) is digital. Yet, since they are challenging to design and tune, they constitute a valuable IP that ought to be protected. This paper is the first to show a method to secure analog IP by exploiting layout-based effects that are typically seen as undesirable detractors in IC design. Specifically, we make use of the effects of Length of Oxide Diffusion and Well Proximity Effect on transistors for tuning the devices' critical parameters (e.g., gm and Vth). Such parameters are hidden behind key inputs, akin to the logic locking approach for digital ICs. The proposed technique is applied for locking an Operational Transconductance Amplifier. In order to showcase the robustness of the achieved obfuscation, the case studied circuit is simulated for a large number of key sets, i.e., >50K and >300K, and the results show a wide range of degradation in open-loop gain (up to 130dB), phase margin (up to 50 deg), 3dB bandwidth (approx. 2.5MHz), and power (approx. 1mW) of the locked circuit when incorrect keys are applied. Our results show the benefit of the technique and the incurred overheads. We also justify the non-effectiveness of reverse engineering efforts for attacking the proposed approach. More importantly, our technique employs only regular transistors and requires neither changes to the IC fabrication process nor any foundry-level coordination or trust.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源