论文标题
部分可观测时空混沌系统的无模型预测
Recognizing Geometric Intersection Graphs Stabbed by a Line
论文作者
论文摘要
在本文中,我们确定了识别两个图类别的计算复杂性,即\ emph {接地l} - 图和\ emph {stabbable {stabbable网格相交}图。通过将垂直($ \ vert $)段的底部端点加入水平($ - $)段的左端点来制作L形。垂直段的顶点被称为L形的{\ em Anchor}。接地的L图是L形的相交图,因此所有L形锚的锚位于同一水平线上。我们表明,识别接地的L-Gaphs是NP完整的。这回答了jel {\'i} nek \&t {Ö} pfer(Electron。J.Comb。,2019)提出的一个开放问题。 网格相交图是轴 - 并行线段的相交图,其中两个垂直(类似地,两个水平)段无法相交。我们说,如果$ s $相交$ \ ell $,则(不一定是轴 - 平行)$ \ ell $ abt段$ s $。图形$ g $是可刺的网格相交图($ stabgig $),如果有$ g $的网格交点表示,其中相同的线刺伤其所有细分市场。我们表明,即使在限制的图表上,识别$ stabgig $ graphs也是$ np $ complete。这回答了Chaplick \ etal(\ textsc {o} rder,2018年)提出的一个公开问题。
In this paper, we determine the computational complexity of recognizing two graph classes, \emph{grounded L}-graphs and \emph{stabbable grid intersection} graphs. An L-shape is made by joining the bottom end-point of a vertical ($\vert$) segment to the left end-point of a horizontal ($-$) segment. The top end-point of the vertical segment is known as the {\em anchor} of the L-shape. Grounded L-graphs are the intersection graphs of L-shapes such that all the L-shapes' anchors lie on the same horizontal line. We show that recognizing grounded L-graphs is NP-complete. This answers an open question asked by Jel{\'ı}nek \& T{ö}pfer (Electron. J. Comb., 2019). Grid intersection graphs are the intersection graphs of axis-parallel line segments in which two vertical (similarly, two horizontal) segments cannot intersect. We say that a (not necessarily axis-parallel) straight line $\ell$ stabs a segment $s$, if $s$ intersects $\ell$. A graph $G$ is a stabbable grid intersection graph ($StabGIG$) if there is a grid intersection representation of $G$ in which the same line stabs all its segments. We show that recognizing $StabGIG$ graphs is $NP$-complete, even on a restricted class of graphs. This answers an open question asked by Chaplick \etal (\textsc{O}rder, 2018).