论文标题
通过固定等级阳性半明确矩阵的轨迹分析自动估算自我报告的疼痛
Automatic Estimation of Self-Reported Pain by Trajectory Analysis in the Manifold of Fixed Rank Positive Semi-Definite Matrices
论文作者
论文摘要
我们提出了一种自动方法来根据从视频中提取的面部标志来估算自我报告的疼痛。对于每个视频序列,我们将面部分解为四个不同的区域,并通过使用这些区域的地标对面部运动的动力进行建模来衡量疼痛强度。基于革兰氏矩阵的公式用于代表固定等级的对称正极半明确矩阵Riemannian歧管上的地标轨迹。曲线拟合算法用于平滑轨迹,并执行时间对齐以计算歧管上的轨迹之间的相似性。然后对支持矢量回归分类器进行训练,以编码与自我报告的疼痛强度测量一致的疼痛强度水平。最后,进行每个区域的估计后期融合以获得最终的预测疼痛水平。提出的方法将在两个公开可用的数据集上进行评估,即UNBCMCMASTER肩部疼痛档案和Biovid热疼痛数据集。我们使用不同的测试协议将我们的方法与两个数据集的最新方法进行了比较,以显示所提出的方法的竞争力。
We propose an automatic method to estimate self-reported pain based on facial landmarks extracted from videos. For each video sequence, we decompose the face into four different regions and the pain intensity is measured by modeling the dynamics of facial movement using the landmarks of these regions. A formulation based on Gram matrices is used for representing the trajectory of landmarks on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. A curve fitting algorithm is used to smooth the trajectories and temporal alignment is performed to compute the similarity between the trajectories on the manifold. A Support Vector Regression classifier is then trained to encode extracted trajectories into pain intensity levels consistent with self-reported pain intensity measurement. Finally, a late fusion of the estimation for each region is performed to obtain the final predicted pain level. The proposed approach is evaluated on two publicly available datasets, the UNBCMcMaster Shoulder Pain Archive and the Biovid Heat Pain dataset. We compared our method to the state-of-the-art on both datasets using different testing protocols, showing the competitiveness of the proposed approach.