论文标题
通过潜在表示学习有条件独立测试
Conditional Independence Testing via Latent Representation Learning
论文作者
论文摘要
检测条件独立性在几个统计和机器学习任务中起着关键作用,尤其是在因果发现算法中。在这项研究中,我们介绍了LCIT(基于潜在的条件独立性检验) - 一种基于表示学习的有条件独立性测试的新型非参数方法。我们的主要贡献涉及提出一个生成框架,在该框架中测试X和Y给定Z之间的独立性,我们首先学会推断目标变量X和Y的潜在表示,该X和Y不包含有关条件变量变量Z的信息。然后对潜在变量进行研究。然后对任何可以使用传统的部分相关测试进行任何重要剩余依赖性进行了研究。经验评估表明,在不同的评估指标下,LCIT始终超过几个最先进的基线,并且能够很好地适应非线性和高维度,并在多样化的合成和真实数据集上。
Detecting conditional independencies plays a key role in several statistical and machine learning tasks, especially in causal discovery algorithms. In this study, we introduce LCIT (Latent representation based Conditional Independence Test)-a novel non-parametric method for conditional independence testing based on representation learning. Our main contribution involves proposing a generative framework in which to test for the independence between X and Y given Z, we first learn to infer the latent representations of target variables X and Y that contain no information about the conditioning variable Z. The latent variables are then investigated for any significant remaining dependencies, which can be performed using the conventional partial correlation test. The empirical evaluations show that LCIT outperforms several state-of-the-art baselines consistently under different evaluation metrics, and is able to adapt really well to both non-linear and high-dimensional settings on a diverse collection of synthetic and real data sets.