论文标题

具有混合差异隐私保证的跨网络社交用户嵌入

Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees

论文作者

Ren, Jiaqian, Jiang, Lei, Peng, Hao, Lyu, Lingjuan, Liu, Zhiwei, Chen, Chaochao, Wu, Jia, Bai, Xu, Yu, Philip S.

论文摘要

整合多个在线社交网络(OSN)对许多下游社交挖掘任务(例如用户偏好建模,建议和链接预测)具有重要意义。但是,不幸的是,它伴随着有关泄漏敏感用户信息的越来越多的隐私问题。如何完全利用来自不同在线社交网络的数据,同时保存用户隐私仍然无法解决。为此,我们提出了一个跨网络的社交用户嵌入框架,即DP-Crosue,以隐私的方式学习用户的全面表示。我们共同考虑具有不同隐私保证的部分调整社交网络的信息。特别是,对于每个异质社交网络,我们首先引入一个混合差异隐私概念,以捕获异构数据类型的隐私期望的变化。接下来,为了找到跨社交网络的用户链接,我们进行了无监督的基于用户嵌入的对齐方式,其中通过异质网络嵌入技术实现了用户嵌入。为了进一步增强用户嵌入,一种新颖的跨网络GCN嵌入模型旨在通过那些对齐用户在网络上传输知识。在三个现实世界数据集上进行的广泛实验表明,我们的方法对用户兴趣预测任务以及捍卫用户属性推理攻击的嵌入进行了重大改进。

Integrating multiple online social networks (OSNs) has important implications for many downstream social mining tasks, such as user preference modelling, recommendation, and link prediction. However, it is unfortunately accompanied by growing privacy concerns about leaking sensitive user information. How to fully utilize the data from different online social networks while preserving user privacy remains largely unsolved. To this end, we propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way. We jointly consider information from partially aligned social networks with differential privacy guarantees. In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types. Next, to find user linkages across social networks, we make unsupervised user embedding-based alignment in which the user embeddings are achieved by the heterogeneous network embedding technology. To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users. Extensive experiments on three real-world datasets demonstrate that our approach makes a significant improvement on user interest prediction tasks as well as defending user attribute inference attacks from embedding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源