论文标题

传感器网络中最快的异常检测,带有未标记的样品

Quickest Anomaly Detection in Sensor Networks With Unlabeled Samples

论文作者

Sun, Zhongchang, Zou, Shaofeng

论文摘要

研究了使用未标记样品的网络中最快的异常检测问题。在某些未知的时间,网络中出现异常,并改变了某些未知传感器的数据生成分布。融合中心在每个时间步骤接收的数据向量会经历其条目的一些未知和任意置换(未标记的样本)。融合中心的目的是检测到符合错误警报约束的最小检测延迟的异常。使用未标记的样本,不再使用结合局部累积总和(CUSUM)统计的现有方法。几个主要问题包括如果没有标签信息,是否仍然可以进行检测,如果是的,那么什么是基本限制以及如何实现这一目标。研究了两种静态和动态异常的病例,其中受异常影响的传感器可能随着时间而变化。对于这两种情况,构建了基于混合可能性比和/或最大似然估计的实践算法。从理论上讲,它们的平均检测延迟和错误警报率是特征的。还得出了给定误报率的平均检测延迟的通用下限,这进一步证明了两种算法的渐近最佳性。

The problem of quickest anomaly detection in networks with unlabeled samples is studied. At some unknown time, an anomaly emerges in the network and changes the data-generating distribution of some unknown sensor. The data vector received by the fusion center at each time step undergoes some unknown and arbitrary permutation of its entries (unlabeled samples). The goal of the fusion center is to detect the anomaly with minimal detection delay subject to false alarm constraints. With unlabeled samples, existing approaches that combines local cumulative sum (CuSum) statistics cannot be used anymore. Several major questions include whether detection is still possible without the label information, if so, what is the fundamental limit and how to achieve that. Two cases with static and dynamic anomaly are investigated, where the sensor affected by the anomaly may or may not change with time. For the two cases, practical algorithms based on the ideas of mixture likelihood ratio and/or maximum likelihood estimate are constructed. Their average detection delays and false alarm rates are theoretically characterized. Universal lower bounds on the average detection delay for a given false alarm rate are also derived, which further demonstrate the asymptotic optimality of the two algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源