论文标题

使用有限的历史观察来估算对在线交付的需求

Estimating Demand for Online Delivery using Limited Historical Observations

论文作者

Mirzanezhad, Majid, Twumasi-Boakye, Richard, Broaddus, Andrea, Fabusuyi, Tayo

论文摘要

在一定程度上,在共同19-19大流行时,在线购买的速度大大加速了。但是,鉴于缺乏公共数据,对这一发展的反应一直在挑战。现有的数据可能很少,并且由于调查参与者的非响应,可能会缺少大部分数据。这些数据匮乏使常规预测模型不可靠。我们通过为未来几年的数据推出和合成需求估算的算法开发算法来解决这一缺点,而没有实际的地面真相数据。我们使用2017 Puget Sound区域委员会(PSRC)和全国家庭旅行调查(NHTS)数据,并从NHTS中算取西雅图 - 塔科马 - 贝尔维(Seattle-Tacome-Bellevue MSA),在那里交付数据相对频繁。我们的插补具有均方错误$ \ MATHSF {MSE} \大约0.65 $的NHTS,其平均$ \约1 $和标准偏差$ \约3.5 $,并提供了两个数据源样本之间的相似性匹配。鉴于2021年NHTS数据不可用,我们使用PSRC数据源的时间保真度(2017和2021)将分辨率投影到NHTS上,提供了NHTS交付的合成估计。除了提高估计值的可靠性之外,我们报告了与确定交付量相关的解释变量。这项工作通过最大化可用的稀疏数据来产生合理的估算,从而进一步促进了对商品交付的需求估算的现有方法,从而有助于促进政策决策。

Driven in part by the COVID-19 pandemic, the pace of online purchases for at-home delivery has accelerated significantly. However, responding to this development has been challenging given the lack of public data. The existing data may be infrequent, and a significant portion of data may be missing because of survey participant non-responses. This data paucity renders conventional predictive models unreliable. We address this shortcoming by developing algorithms for data imputation and synthetic demand estimation for future years without the actual ground truth data. We use 2017 Puget Sound Regional Council (PSRC) and National Household Travel Survey (NHTS) data and impute from the NHTS for the Seattle-Tacoma-Bellevue MSA where delivery data is relatively more frequent. Our imputation has the mean-squared error $\mathsf{MSE} \approx 0.65$ to NHTS with mean $\approx 1$ and standard deviation $\approx 3.5$ and provides a similarity matching between the two data sources' samples. Given the unavailability of NHTS data for 2021, we use the temporal fidelity of PSRC data sources (2017 and 2021) to project the resolution onto the NHTS providing a synthetic estimate of NHTS deliveries. Beyond the improved reliability of the estimates, we report explanatory variables that were relevant in determining the volume of deliveries. This work furthers existing methods in demand estimation for goods deliveries by maximizing available sparse data to generate reasonable estimates that could facilitate policy decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源