论文标题

在晶格量子场理论的经典模拟中,插值操作员的量子优化构建策略

Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories

论文作者

Avkhadiev, A., Shanahan, P. E., Young, R. D.

论文摘要

最近有人认为,嘈杂的中间量子计算机可用于优化古典计算机上的晶格量子场理论(LQFT)计算的插值操作员结构。在此,开发和实施了该方法的两个具体实现。第一种方法是最大化由作用于真空状态到目标特征态的真空状态的插值操作员创建的状态的重叠或保真度。第二个是将插值状态的能量期望值最小化。这些方法是在(1+1)的概念验证计算中实现的(1+1) - 对单品味的大型schwinger模型,以获得该理论中矢量介子状态的量子优化的插值操作构造。尽管在没有量子门误差引起的噪声的情况下,最好是最大化,但发现在概念验证计算中,能量最小化对这些效果更为强大。这项工作是一种具体的证明,表明了如何使用中等项中的量子计算机来加速经典的LQFT计算。

It has recently been argued that noisy intermediate-scale quantum computers may be used to optimize interpolating operator constructions for lattice quantum field theory (LQFT) calculations on classical computers. Here, two concrete realizations of the method are developed and implemented. The first approach is to maximize the overlap, or fidelity, of the state created by an interpolating operator acting on the vacuum state to the target eigenstate. The second is to instead minimize the energy expectation value of the interpolated state. These approaches are implemented in a proof-of-concept calculation in (1+1)-dimensions for a single-flavor massive Schwinger model to obtain quantum-optimized interpolating operator constructions for a vector meson state in the theory. Although fidelity maximization is preferable in the absence of noise due to quantum gate errors, it is found that energy minimization is more robust to these effects in the proof-of-concept calculation. This work serves as a concrete demonstration of how quantum computers in the intermediate term might be used to accelerate classical LQFT calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源