论文标题
充气膨胀和Hadamard重新归一化的等效性
Equivalence of the adiabatic expansion and Hadamard renormalization for a charged scalar field
论文作者
论文摘要
我们研究了三种方法(Hadamard,Dewitt-Schwinger和绝热)与在带电量子标量场上作用的现场运算符的期望值重新归一化的关系。首先,我们证明了Feynman Green功能的DeWitt-Schwinger表示是Hadamard表示的一个特殊情况。接下来,我们将注意力限制在空间平坦的Friedmann-Lemaitre-Robertson-Walker Walker宇宙中,以时间依赖性,纯粹的电力,背景电磁场,考虑了两个,三维和四维空间时间。在应力能量张量(SET)重新归一化所需的顺序上,我们发现当时空点在空间上分离时,绿色功能的绝热和Dewitt-Schwinger膨胀。在两个和四个维度中,所得的Dewitt-Schinginger和绝热的扩展相同。在三个维度中,DeWitt-Schwinger的扩展包含绝热顺序四的术语,这对于集合的重新归一化并不是必需的,因此在绝热扩张中不存在。在考虑的情况下,在考虑的方案中,德威特 - 辛格林格和绝热方法的等效性在偶数方面得到了证明。在奇数方面,情况不太清楚,需要进一步研究以确定绝热的重生是否是局部协变的重新规定处方。
We examine the relationship between three approaches (Hadamard, DeWitt-Schwinger and adiabatic) to the renormalization of expectation values of field operators acting on a charged quantum scalar field. First, we demonstrate that the DeWitt-Schwinger representation of the Feynman Green's function is a particular case of the Hadamard representation. Next, we restrict attention to a spatially flat Friedmann-Lemaitre-Robertson-Walker universe with time-dependent, purely electric, background electromagnetic field, considering two, three and four-dimensional space-times. Working to the order required for the renormalization of the stress-energy tensor (SET), we find the adiabatic and DeWitt-Schwinger expansions of the Green's function when the space-time points are spatially separated. In two and four dimensions, the resulting DeWitt-Schwinger and adiabatic expansions are identical. In three dimensions, the DeWitt-Schwinger expansion contains terms of adiabatic order four which are not necessary for the renormalization of the SET and hence absent in the adiabatic expansion. The equivalence of the DeWitt-Schwinger and adiabatic approaches to renormalization in the scenario considered is thereby demonstrated in even dimensions. In odd dimensions the situation is less clear and further investigation is required in order to determine whether adiabatic renormalization is a locally covariant renormalization prescription.