论文标题

通用量子主方程的准经典方法

Quasiclassical approaches to the generalized quantum master equation

论文作者

Amati, Graziano, Saller, Maximilian A. C., Kelly, Aaron, Richardson, Jeremy O.

论文摘要

广义量子主方程(GQME)的形式主义是同时提高准经典轨迹方法的准确性和效率的有效工具。 GQME以非马克维亚运动方程式表示相关函数,涉及的内存内核通常是快速付费的,因此可以通过短期的准经典轨迹来计算。在本文中,我们研究了GQME的近似解,通过使用两种方法(即Ehrenfest平均场理论和旋转映射)来计算内核获得。我们测试了两种电子水平之间能量偏置增加的自旋 - 玻璃孔模型的方法,并特别关注种群的长期限制。我们发现,GQME预测的准确性在很大程度上取决于用于计算内核的特定技术。特别是,旋转映射的表现优于所有研究系统的Ehrenfest。通过将方法与主方程耦合,可以解决影响自旋图的非物理负电子种群的问题。相反,尽管从直接动力学计算出的人群是正定的,但Ehrenfest与GQME结合使用,可以预测负人群。

The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels which are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper we study the approximate solution of the GQME, obtained by calculating the kernels with two methods, namely Ehrenfest mean-field theory and spin mapping. We test the approaches on a range of spin--boson models with increasing energy bias between the two electronic levels and place a particular focus on the long-time limits of the populations. We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels. In particular, spin mapping outperforms Ehrenfest for all systems studied. The problem of unphysical negative electronic populations affecting spin mapping is resolved by coupling the method with the master equation. Conversely, Ehrenfest in conjunction with the GQME can predict negative populations, despite the fact that the populations calculated from direct dynamics are positive definite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源