论文标题
对比语义引导的图像平滑网络
Contrastive Semantic-Guided Image Smoothing Network
论文作者
论文摘要
图像平滑是一项基本的低级视觉任务,旨在保留图像的显着结构,同时删除微不足道的细节。图像平滑中已经探索了深度学习,以处理语义结构和微不足道的细节的复杂纠缠。但是,当前的方法忽略了平滑方面的两个重要事实:1)受到有限数量的高质量平滑地面真相监督监督的幼稚像素级回归可能会导致域的转移并引起对现实世界图像的概括问题; 2)纹理外观与对象语义密切相关,因此图像平滑需要意识到语义差异以应用自适应平滑强度。为了解决这些问题,我们提出了一个新颖的对比语义引导的图像平滑网络(CSGIS-NET),该网络在促进了强大的图像平滑之前结合了对比的先前和语义。通过利用不希望的平滑效应作为负面教师,并结合分段任务以鼓励语义独特性来增强监督信号。为了实现所提出的网络,我们还使用纹理增强和平滑标签(即VOC-Smoth)丰富了原始的VOC数据集,该数据集首先桥接图像平滑和语义细分。广泛的实验表明,所提出的CSGI-NET大量优于最先进的算法。代码和数据集可在https://github.com/wangjie6866/csgis-net上找到。
Image smoothing is a fundamental low-level vision task that aims to preserve salient structures of an image while removing insignificant details. Deep learning has been explored in image smoothing to deal with the complex entanglement of semantic structures and trivial details. However, current methods neglect two important facts in smoothing: 1) naive pixel-level regression supervised by the limited number of high-quality smoothing ground-truth could lead to domain shift and cause generalization problems towards real-world images; 2) texture appearance is closely related to object semantics, so that image smoothing requires awareness of semantic difference to apply adaptive smoothing strengths. To address these issues, we propose a novel Contrastive Semantic-Guided Image Smoothing Network (CSGIS-Net) that combines both contrastive prior and semantic prior to facilitate robust image smoothing. The supervision signal is augmented by leveraging undesired smoothing effects as negative teachers, and by incorporating segmentation tasks to encourage semantic distinctiveness. To realize the proposed network, we also enrich the original VOC dataset with texture enhancement and smoothing labels, namely VOC-smooth, which first bridges image smoothing and semantic segmentation. Extensive experiments demonstrate that the proposed CSGIS-Net outperforms state-of-the-art algorithms by a large margin. Code and dataset are available at https://github.com/wangjie6866/CSGIS-Net.