论文标题

使用付款数据和机器学习的宏观经济预测

Macroeconomic Predictions using Payments Data and Machine Learning

论文作者

Chapman, James T. E., Desai, Ajit

论文摘要

预测经济的短期动态 - 对经济代理商决策过程的重要意见 - 经常在线性模型中使用滞后指标。这通常在正常时期就足够了,但在危机期间可能不足。本文旨在证明,在非线性机器学习方法的帮助下,非传统和及时的数据(例如零售和批发付款)可以为决策者提供复杂的模型,以准确估算几乎实时的关键宏观经济指标。此外,我们提供了一组计量经济学工具,以减轻机器学习模型中的过度拟合和解释性挑战,以提高其政策使用效率。我们的付款数据,非线性方法和量身定制的交叉验证方法的模型有助于提高宏观经济的象征准确性高达40 \% - 在COVID-19期间的增长较高。我们观察到,付款数据对经济预测的贡献很小,在低和正常增长期间是线性的。但是,付款数据的贡献很大,不对称和在强生长期间的非线性。

Predicting the economy's short-term dynamics -- a vital input to economic agents' decision-making process -- often uses lagged indicators in linear models. This is typically sufficient during normal times but could prove inadequate during crisis periods. This paper aims to demonstrate that non-traditional and timely data such as retail and wholesale payments, with the aid of nonlinear machine learning approaches, can provide policymakers with sophisticated models to accurately estimate key macroeconomic indicators in near real-time. Moreover, we provide a set of econometric tools to mitigate overfitting and interpretability challenges in machine learning models to improve their effectiveness for policy use. Our models with payments data, nonlinear methods, and tailored cross-validation approaches help improve macroeconomic nowcasting accuracy up to 40\% -- with higher gains during the COVID-19 period. We observe that the contribution of payments data for economic predictions is small and linear during low and normal growth periods. However, the payments data contribution is large, asymmetrical, and nonlinear during strong negative or positive growth periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源