论文标题
IMG2IMU:将知识从大规模图像转换为IMU感应应用
IMG2IMU: Translating Knowledge from Large-Scale Images to IMU Sensing Applications
论文作者
论文摘要
通过自我监督学习获得的预训练表示,可以通过小型培训数据在任务上达到高度准确性。与视觉和自然语言处理领域不同,基于IMU的应用程序的预培训是具有挑战性的,因为很少有足够大小和多样性的公共数据集可以学习可推广的表示。为了克服这个问题,我们提出了IMG2IMU,该IMG2IMU将预先训练的表示从大规模图像转化为不同的IMU感应任务。我们将传感器数据转换为可解释的频谱图,以便模型利用从视觉中获得的知识。我们进一步为图像提供了一种传感器感知的预训练方法,该方法使模型能够为IMU传感应用获取特别有影响力的知识。这涉及在我们的增强集上使用对比度学习,该集合为传感器数据的属性定制。我们对四个不同的IMU感应任务进行的评估表明,IMG2IMU平均比在传感器数据上预先训练的基准的表现平均9.6%p F1分数,这说明视力知识可以有效地纳入IMU感应应用程序中,只有有限的训练数据才能可用。
Pre-training representations acquired via self-supervised learning could achieve high accuracy on even tasks with small training data. Unlike in vision and natural language processing domains, pre-training for IMU-based applications is challenging, as there are few public datasets with sufficient size and diversity to learn generalizable representations. To overcome this problem, we propose IMG2IMU that adapts pre-trained representation from large-scale images to diverse IMU sensing tasks. We convert the sensor data into visually interpretable spectrograms for the model to utilize the knowledge gained from vision. We further present a sensor-aware pre-training method for images that enables models to acquire particularly impactful knowledge for IMU sensing applications. This involves using contrastive learning on our augmentation set customized for the properties of sensor data. Our evaluation with four different IMU sensing tasks shows that IMG2IMU outperforms the baselines pre-trained on sensor data by an average of 9.6%p F1-score, illustrating that vision knowledge can be usefully incorporated into IMU sensing applications where only limited training data is available.