论文标题
结核病还是不是结核病?结核病分类的声学咳嗽分析
TB or not TB? Acoustic cough analysis for tuberculosis classification
论文作者
论文摘要
在这项工作中,我们探讨了结核病(TB)咳嗽分类的复发性神经网络体系结构。与以前在该域中实施深层体系结构的尝试不成功的尝试相反,我们表明基本的双向长期记忆网络(BILSTM)可以提高性能。此外,我们表明,通过与新提供的基于注意力的架构一起进行贪婪的特征选择,该体系结构学习患者不变特征,与基线和其他所考虑的架构相比,可以实现更好的概括。此外,这种注意机制允许检查被认为对进行分类很重要的音频信号的时间区域。最后,我们开发了一种神经风格转移技术来推断理想的输入,随后可以分析。我们发现结核病和非结核咳嗽的理想功率谱之间存在明显的差异,这为音频信号中特征的起源提供了线索。
In this work, we explore recurrent neural network architectures for tuberculosis (TB) cough classification. In contrast to previous unsuccessful attempts to implement deep architectures in this domain, we show that a basic bidirectional long short-term memory network (BiLSTM) can achieve improved performance. In addition, we show that by performing greedy feature selection in conjunction with a newly-proposed attention-based architecture that learns patient invariant features, substantially better generalisation can be achieved compared to a baseline and other considered architectures. Furthermore, this attention mechanism allows an inspection of the temporal regions of the audio signal considered to be important for classification to be performed. Finally, we develop a neural style transfer technique to infer idealised inputs which can subsequently be analysed. We find distinct differences between the idealised power spectra of TB and non-TB coughs, which provide clues about the origin of the features in the audio signal.