论文标题

与皮埃尔螺旋钻天文台的杂种数据探测望元相互作用模型

Probing hadronic interaction models with the hybrid data of the Pierre Auger Observatory

论文作者

Vícha, Jakub

论文摘要

目前,在超高能量的Hadronic相互作用的描述中仍然存在大型的系统不确定性,并且尚未达到空调实验数据的完全一致的描述。 Pierre螺旋钻天文台收集的数据量同时使用能量范围的荧光和表面检测器$ 10^{18.5} -10^{19.0} $ eV提供了进行模型预测多参数测试的机会。我们应用全局方法同时拟合宇宙射线的质量组成,并调整最大淋浴深度($ x_ \ text {max} $),并在地面层($ r_ \ text {hast} $)处于地面信号。对于模拟的$ x_ \ text {max} $,获得了混合数据的最佳描述,比调谐到LHC数据的HADRONIC交互模型所预测的更深入的比例。因此,相对于未修饰的Hadronic相互作用模型,可以缓解地面上模拟的耐药信号的赤字。由于调整的大小$Δx_\ text {max} $和$ r_ \ text {hove} $以及样本中的大量事件,因此这些假定的调整的统计意义大,大于5 $σ_\ text {stat {stat} $,即使对于系统的实验性转移,即使在1 $ $队标的组合中也是如此的模型,即nsims of Forths $ f text $} $} $ {sys} n of text ands}。

Presently large systematic uncertainties remain in the description of hadronic interactions at ultra-high energies and a fully consistent description of air-shower experimental data is yet to be reached. The amount of data collected by the Pierre Auger Observatory using simultaneously the fluorescence and surface detectors in the energy range $10^{18.5}-10^{19.0}$ eV has provided opportunity to perform a multi-parameter test of model predictions. We apply a global method to simultaneously fit the mass composition of cosmic rays and adjustments to the simulated depth of shower maximum ($X_\text{max}$), and hadronic signals at ground level ($R_\text{Had}$). The best description of hybrid data is obtained for a deeper scale of simulated $X_\text{max}$ than predicted by hadronic interaction models tuned to the LHC data. Consequently, the deficit of the simulated hadronic signal at ground level, dominated by muons, is alleviated with respect to the unmodified hadronic interaction models. Because of the size of the adjustments $ΔX_\text{max}$ and $R_\text{Had}$ and the large number of events in the sample, the statistical significance of these assumed adjustments is large, greater than 5$σ_\text{stat}$, even for the combination of the systematic experimental shifts within 1$σ_\text{sys}$ that are the most favorable for the models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源