论文标题

模型透明度和解释性:对保险业的调查和应用

Model Transparency and Interpretability : Survey and Application to the Insurance Industry

论文作者

Delcaillau, Dimitri, Ly, Antoine, Papp, Alize, Vermet, Franck

论文摘要

即使效率有效,模型的使用也必须伴随着转换数据(上游和下游)的所有级别的理解。因此,需求增加以定义单个数据与算法可以根据其分析所能做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。

The use of models, even if efficient, must be accompanied by an understanding at all levels of the process that transforms data (upstream and downstream). Thus, needs increase to define the relationships between individual data and the choice that an algorithm could make based on its analysis (e.g. the recommendation of one product or one promotional offer, or an insurance rate representative of the risk). Model users must ensure that models do not discriminate and that it is also possible to explain their results. This paper introduces the importance of model interpretation and tackles the notion of model transparency. Within an insurance context, it specifically illustrates how some tools can be used to enforce the control of actuarial models that can nowadays leverage on machine learning. On a simple example of loss frequency estimation in car insurance, we show the interest of some interpretability methods to adapt explanation to the target audience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源