论文标题
符合$ k $和弦的无周期的图形的金属结合度
Chi-boundedness of graphs containing no cycles with $k$ chords
论文作者
论文摘要
我们证明,包含$ k $ -schords的无周期的图形家族为$χ$结合,对于$ k $,$ \ ell(\ ell-2)$,带有$ \ ell \ ell \ ge 3 $ a a inverger。这将验证Aboulker and Bousquet(2015年)的猜想(2015年)。
We prove that the family of graphs containing no cycle with exactly $k$-chords is $χ$-bounded, for $k$ large enough or of form $\ell(\ell-2)$ with $\ell \ge 3$ an integer. This verifies (up to a finite number of values $k$) a conjecture of Aboulker and Bousquet (2015).