论文标题
可集成的系统,nijenhuis几何形状和劳里切氏菌双片结构
Integrable systems, Nijenhuis geometry and Lauricella bi-flat structures
论文作者
论文摘要
结合从Frölicher-Nijenhuis bicomplex $(D,D_L)$开始的流体动力类型的构建,与(1,1) - tensor field $ l $相关联,消失了Nijenhuis torsion,与nijenhuis torsion一起,与从水力组合的集成系统开始的平坦结构的构建,我们在水力范围内构建。 $(\ nabla,e,\ circ,\ nabla^*,*,e)$与frölicher-nijenhuis bicomplexes相关。我们称这些结构为lauricella bi-flat结构,因为在n维半神经案例(N-1)r的平坦坐标是lauricella函数。
Combining the construction of integrable systems of hydrodynamic type starting from the Frölicher-Nijenhuis bicomplex $(d,d_L)$ associated with a (1,1)-tensor field $L$ with vanishing Nijenhuis torsion with the construction of flat structures starting from integrable systems of hydrodynamic type we define multi-parameter families of bi-flat structures $(\nabla,e,\circ,\nabla^*,*,E)$ associated with Frölicher-Nijenhuis bicomplexes. We call these structures Lauricella bi-flat structures since in the n-dimensional semisimple case (n-1) flat coordinates of r are Lauricella functions.