论文标题
采矿渐进模式的蚂蚁菌落优化
Ant Colony Optimization for Mining Gradual Patterns
论文作者
论文摘要
逐渐的模式提取是数据库中(KDD)知识发现中的一个字段,该领域将数据集的属性之间的相关性映射为逐渐依赖性。逐渐的依赖性可以采用“较高的属性k,较小的属性L”的形式。在本文中,我们提出了一种使用概率方法来学习和提取频繁逐步模式的蚂蚁菌落优化技术。通过对现实世界数据集的计算实验,我们将基于蚂蚁的算法的性能与现有的渐进项目集提取算法进行了比较,我们发现我们的算法表现优于后期,尤其是在处理大型数据集时。
Gradual pattern extraction is a field in (KDD) Knowledge Discovery in Databases that maps correlations between attributes of a data set as gradual dependencies. A gradual dependency may take a form of "the more Attribute K , the less Attribute L". In this paper, we propose an ant colony optimization technique that uses a probabilistic approach to learn and extract frequent gradual patterns. Through computational experiments on real-world data sets, we compared the performance of our ant-based algorithm to an existing gradual item set extraction algorithm and we found out that our algorithm outperforms the later especially when dealing with large data sets.