论文标题
使用平均场方法对流行病建模和控制的最新进展
Recent Advances in Modeling and Control of Epidemics using a Mean Field Approach
论文作者
论文摘要
在全球层面上对流行病(如新型电晕病毒)等流行病的建模和控制已经至关重要。在此上下文中使用的自然而强大的动态建模框架是Markov决策过程(CTMDP),它涵盖了经典的隔室范式,例如易感性侵袭性侵袭(SIR)模型。基于CTMDP的模型的挑战激发了对更有效的方法的需求,而平均现场方法则提供了有效的选择。平均场方法计算了包含大量相互作用节点的动力系统的集体行为(其中节点代表人群中的个体)。本文(a)概述了流行建模和控制的平均现场方法,并且(b)提供了有关该主题最新进展的最新更新。我们在本文中的讨论沿两个特定线程进行。第一个线程假设单个节点忠实地遵循监管机构规定的具有社会最佳控制政策。第二个线程允许单个节点表现出独立的战略行为。在这种情况下,将战略互动建模为平均现场游戏,并且控制基于相关的平均纳什平衡。在本文中,我们从使用扩展的隔室模型-SIVR进行对流行病建模的讨论开始,并提供了一个说明性的示例。接下来,我们使用平均野外方法,最佳地控制流行病学,对相关文献进行综述,并处理监管机构如何在人群中最佳地占据流行病的传播。此后,我们提供了有关在流行病扩散和控制研究中使用基于平均野外游戏方法的文献的更新。我们以相关的未来研究方向结束了本文。
Modeling and control of epidemics such as the novel Corona virus have assumed paramount importance at a global level. A natural and powerful dynamical modeling framework to use in this context is a continuous time Markov decision process (CTMDP) that encompasses classical compartmental paradigms such as the Susceptible-Infected-Recovered (SIR) model. The challenges with CTMDP based models motivate the need for a more efficient approach and the mean field approach offers an effective alternative. The mean field approach computes the collective behavior of a dynamical system comprising numerous interacting nodes (where nodes represent individuals in the population). This paper (a) presents an overview of the mean field approach to epidemic modeling and control and (b) provides a state-of-the-art update on recent advances on this topic. Our discussion in this paper proceeds along two specific threads. The first thread assumes that the individual nodes faithfully follow a socially optimal control policy prescribed by a regulatory authority. The second thread allows the individual nodes to exhibit independent, strategic behavior. In this case, the strategic interaction is modeled as a mean field game and the control is based on the associated mean field Nash equilibria. In this paper, we start with a discussion of modeling of epidemics using an extended compartmental model - SIVR and provide an illustrative example. We next provide a review of relevant literature, using a mean field approach, on optimal control of epidemics, dealing with how a regulatory authority may optimally contain epidemic spread in a population. Following this, we provide an update on the literature on the use of the mean field game based approach in the study of epidemic spread and control. We conclude the paper with relevant future research directions.