论文标题
直觉逻辑是一种连接性逻辑
Intuitionistic Logic is a Connexive Logic
论文作者
论文摘要
我们表明,直觉逻辑与共同的Heyting Logic(CHL)演绎相等,此特此是作为具有直觉语义的强连接逻辑的一个示例。我们使用反向代数范式:CHL作为固定品种(详细研究其结构理论)的主张逻辑,该逻辑与heyting代数的多样性相等。我们为CHL提供Hilbert-Style和Gentzen风格的证明系统;此外,我们建议对其连接条件的计算解释,并重新审视Kapsner的超声连续性概念。
We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic (CHL), hereby introduced as an example of a strong connexive logic with intuitive semantics. We use the reverse algebraisation paradigm: CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for CHL; moreover, we suggest a possible computational interpretation of its connexive conditional, and we revisit Kapsner's idea of superconnexivity.